Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract ContextThe > 25,000 km2Flint Hills ecoregion in eastern Kansas and northeastern Oklahoma, USA, is an economically and ecologically important area encompassing the largest remaining tallgrass prairie ecosystem in North America. Prescribed fires are used routinely to control invasive woody species and improve forage production for the beef-cattle industry. However, burning releases harmful pollutants that, at times, contribute to air quality problems for communities across a multi-state area. ObjectivesEstablish a modeling framework for synthesizing long-term ecological data in support of Flint Hills tallgrass prairie management goals for identifying how much, where, and when rangeland burning can be conducted to maximize ecological and economic benefits while minimizing regional air quality impacts. MethodsWe used EPA’s VELMA ecohydrology model to synthesize long-term experimental data at the 35 km2Konza Prairie Biological Station (KPBS) describing the effects of climate, fire, grazing, topography, and soil moisture and nutrient dynamics on tallgrass prairie productivity and fuel loads; and to spatially extrapolate that synthesis to estimate grassland productivity and fuel loads across the nearly 1000 times larger Flint Hills ecoregion to support prescribed burning smoke trajectory modeling using the State of Kansas implementation of the U.S. Forest Service BlueSky framework. ResultsVELMA provided a performance-tested synthesis of KPBS data from field observations and experiments, thereby establishing a tool for regionally simulating the combined effects of climate, fire, grazing, topography, soil moisture, and nutrients on tallgrass prairie productivity and fuel loads. VELMA’s extrapolation of that synthesis allowed difficult-to-quantify fuel loads to be mapped across the Flint Hills to support environmental decision making, such as forecasting when, where, and how prescribed burning will have the least impact on downwind population centers. ConclusionsOur regional spatial and temporal extrapolation of VELMA’s KPBS data synthesis posits that the effects of integrated ecohydrological processes operate similarly across tallgrass prairie spatial scales. Based on multi-scale performance tests of the VELMA-BlueSky toolset, our multi-institution team is confident that it can assist stakeholders and decision makers in realistically exploring tallgrass prairie management options for balancing air quality, tallgrass prairie sustainability, and associated economic benefits for the Flint Hills ecoregion and downwind communities.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Abstract Bison have long been considered a keystone species of North American prairies, increasing plant and animal diversity through a number of unique behaviors. One such behavior is wallowing, in which the repeated rolling of bison in the same spot leads to the formation of small, shallow, oval depressions called wallows. The objective of this study was to characterize spatial and physical attributes of bison wallows at the Konza Prairie Biological Station, a tallgrass prairie preserve in northeastern Kansas. We used aerial imagery from two different years (2011 and 2019) to assess the abundance and spatial distribution of these wallows in relation to fire frequency, elevation, and slope. We also recorded physical characteristics (2020) for a randomly selected subset of wallows and analyzed these data in relation to the same landscape features. Results from the analysis of the aerial images indicated that wallows were more abundant in areas characterized by combinations of more frequent burning, higher elevations, and little or no slope. In the 2020 physical measurements, we found that wallows were smaller in areas burned more often and shallower at higher elevations, particularly when located on grazing lawns. Terrestrial plants were found in approximately 72.1% of the wallows that were physically sampled, and their prevalence increased with increasing slope. We found some quantity of aquatic plants in approximately 7.1% of the sampled wallows. The probability of finding aquatic vegetation in wallows was higher on grazing lawns and in areas burned less frequently, particularly every 20 years. This study enhances the understanding of the distribution of wallows and their physical characteristics as a type of disturbance that could alter relationships within grassland communities.more » « less
An official website of the United States government
